dc.contributor.author |
Guendouz, Khaled |
|
dc.contributor.author |
Benseddik, Akram |
|
dc.contributor.other |
Boucherit, Mohamed Seghir, Directeur de thèse |
|
dc.contributor.other |
Benkouider, Ouarda, Directeur de thèse |
|
dc.date.accessioned |
2025-10-09T12:52:44Z |
|
dc.date.available |
2025-10-09T12:52:44Z |
|
dc.date.issued |
2025 |
|
dc.identifier.issn |
EP00896 |
|
dc.identifier.uri |
http://repository.enp.edu.dz/jspui/handle/123456789/11219 |
|
dc.description |
Mémoire de Projet de Fin d’Études:Automatique: Alger, École Nationale Polytechnique : 2025 |
fr_FR |
dc.description.abstract |
This thesis focuses on the modeling, identification, and control of a reverse osmosis (RO) desalination
system. In response to the growing scarcity of freshwater resources, RO technology offers a
viable and sustainable solution. The first phase involves the development of a dynamic model
based on experimental data, accurately capturing the interactions between key variables such as
feed pressure, pH, permeate flow rate, and conductivity. Two control strategies are explored :
Model Predictive Control (MPC), implemented on both decoupled and multivariable models,
and classical PID control, including an improved IMC-PID version. The results obtained highlight
the performance, robustness, and limitations of each control approach under model uncertainties |
fr_FR |
dc.language.iso |
en |
fr_FR |
dc.subject |
Desalination |
fr_FR |
dc.subject |
Reverse Osmosis |
fr_FR |
dc.subject |
Modeling |
fr_FR |
dc.subject |
Predictive Control |
fr_FR |
dc.subject |
PID |
fr_FR |
dc.subject |
Robustness |
fr_FR |
dc.title |
Modeling, Identification and Control Strategies for a Reverse Osmosis-Based Desalination System |
fr_FR |
dc.title.alternative |
Modélisation, Identification et Commande d’un Système de Dessalement par Osmose Inverse |
fr_FR |
dc.type |
Thesis |
fr_FR |